Synaptic plasticity in the molluscan peripheral nervous system: physiology and role for peptides.
نویسندگان
چکیده
The plasticity of a synapse in the molluscan peripheral nervous system was examined under a variety of experimental, physiological, and pharmacological conditions. These studies employed the isolated salivary glands and attached buccal ganglia of the freshwater snail Helisoma. Action potentials evoked in buccal neuron 4 normally evoke a large excitatory postsynaptic potential (EPSP) which drives an action potential in gland secretory cells. In order to measure modulation of the EPSP, action potential generation in gland cells was prevented by bathing the preparation in low calcium, high magnesium salines. The relationship between the gland EPSP amplitude and specific physiological properties of neuron 4 was analyzed. In common with some central molluscan synapses, the EPSP was found to be strongly influenced by the membrane potential of neuron 4. Specifically, its amplitude was reduced by hyperpolarization of the neuron 4 soma. The relationship between EPSP amplitude and somatic potential of neuron 4 was linear in the range from resting potential (-47 +/- 6mV) to -100 mV. Furthermore, the EPSP amplitude was directly proportional to the action potential half-width of neuron 4. In order to evaluate the possible physiological role of this action potential/EPSP relationship, we examined whether gland EPSPs are modulated during the spike broadening that occurs in both spontaneous burst activity and imposed impulse trains. The preceding action potential/EPSP relationship was maintained under both of these conditions, i.e., EPSP magnitude increased as spikes broadened during bursts or trains. The peptidergic modulation of neuroglandular transmission was also examined. The molluscan peptide SCPB was found to depolarize neuron 4 and an increase in EPSP amplitude was concomitantly observed.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
P19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملMorphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملP18: Signaling Pathway in Long-Term Potentiation
Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...
متن کاملCerebellum and reelin under chronic treadmill exercise conditions in male rats
Reelin is an extracellular matrix neuroprotein which plays important roles during development and maturation of cerebellum. In the postnatal cerebellum, Reelin is synthesized by cerebellar granule cells and secreted to extracellular matrix. This secreted protein modulates adult synaptic function, neurotransmitter release and regulates plasticity. Exercise has beneficial effects on central nervo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 5 10 شماره
صفحات -
تاریخ انتشار 1985